
xgboost: eXtreme Gradient Boosting

Tianqi Chen, Tong He

Package Version: 1.7.8.1

November 22, 2024

1 Introduction

This is an introductory document of using the xgboost package in R.
xgboost is short for eXtreme Gradient Boosting package. It is an efficient and scalable

implementation of gradient boosting framework by (Friedman, 2001) (Friedman et al., 2000).
The package includes efficient linear model solver and tree learning algorithm. It supports various
objective functions, including regression, classification and ranking. The package is made to be
extendible, so that users are also allowed to define their own objectives easily. It has several
features:

1. Speed: xgboost can automatically do parallel computation on Windows and Linux, with
openmp. It is generally over 10 times faster than gbm.

2. Input Type: xgboost takes several types of input data:

� Dense Matrix: R’s dense matrix, i.e. matrix

� Sparse Matrix: R’s sparse matrix Matrix::dgCMatrix

� Data File: Local data files

� xgb.DMatrix: xgboost’s own class. Recommended.

3. Sparsity: xgboost accepts sparse input for both tree booster and linear booster, and is
optimized for sparse input.

4. Customization: xgboost supports customized objective function and evaluation function

5. Performance: xgboost has better performance on several different datasets.

2 Example with Mushroom data

In this section, we will illustrate some common usage of xgboost. The Mushroom data is cited
from UCI Machine Learning Repository. (Bache and Lichman, 2013)

library(xgboost)

data(agaricus.train, package='xgboost')

data(agaricus.test, package='xgboost')

train <- agaricus.train

test <- agaricus.test

bst <- xgboost(data = train$data, label = train$label, max_depth = 2, eta = 1,

nrounds = 2, objective = "binary:logistic", nthread = 2)

[1] train-logloss:0.233376

[2] train-logloss:0.136658

xgb.save(bst, 'model.save')

[1] TRUE

bst = xgb.load('model.save')

xgb.parameters(bst) <- list(nthread = 2)

pred <- predict(bst, test$data)

xgboost is the main function to train a Booster, i.e. a model. predict does prediction on
the model.

Here we can save the model to a binary local file, and load it when needed. We can’t inspect
the trees inside. However we have another function to save the model in plain text.

xgb.dump(bst, 'model.dump')

[1] TRUE

The output looks like

1

booster[0]:

0:[f28<1.00001] yes=1,no=2,missing=2

1:[f108<1.00001] yes=3,no=4,missing=4

3:leaf=1.85965

4:leaf=-1.94071

2:[f55<1.00001] yes=5,no=6,missing=6

5:leaf=-1.70044

6:leaf=1.71218

booster[1]:

0:[f59<1.00001] yes=1,no=2,missing=2

1:leaf=-6.23624

2:[f28<1.00001] yes=3,no=4,missing=4

3:leaf=-0.96853

4:leaf=0.784718

It is important to know xgboost’s own data type: xgb.DMatrix. It speeds up xgboost, and
is needed for advanced features such as training from initial prediction value, weighted training
instance.

We can use xgb.DMatrix to construct an xgb.DMatrix object:

dtrain <- xgb.DMatrix(train$data, label = train$label, nthread = 2)

class(dtrain)

[1] "xgb.DMatrix"

head(getinfo(dtrain,'label'))

[1] 1 0 0 1 0 0

We can also save the matrix to a binary file. Then load it simply with xgb.DMatrix

xgb.DMatrix.save(dtrain, 'xgb.DMatrix')

[1] TRUE

dtrain = xgb.DMatrix('xgb.DMatrix')

[06:13:18] 6513x126 matrix with 143286 entries loaded from xgb.DMatrix

3 Advanced Examples

The function xgboost is a simple function with less parameter, in order to be R-friendly. The
core training function is wrapped in xgb.train. It is more flexible than xgboost, but it requires
users to read the document a bit more carefully.

xgb.train only accept a xgb.DMatrix object as its input, while it supports advanced features
as custom objective and evaluation functions.

logregobj <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")

preds <- 1/(1 + exp(-preds))

grad <- preds - labels

hess <- preds * (1 - preds)

return(list(grad = grad, hess = hess))

}

evalerror <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")

err <- sqrt(mean((preds-labels)^2))

2

return(list(metric = "MSE", value = err))

}

dtest <- xgb.DMatrix(test$data, label = test$label, nthread = 2)

watchlist <- list(eval = dtest, train = dtrain)

param <- list(max_depth = 2, eta = 1, nthread = 2)

bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, logregobj, evalerror, maximize = FALSE)

[1] eval-MSE:1.592293 train-MSE:1.595967

[2] eval-MSE:2.405194 train-MSE:2.409772

The gradient and second order gradient is required for the output of customized objective
function.

We also have slice for row extraction. It is useful in cross-validation.
For a walkthrough demo, please see R-package/demo/ for further details.

4 The Higgs Boson competition

We have made a demo for the Higgs Boson Machine Learning Challenge.
Here are the instructions to make a submission

1. Download the datasets and extract them to data/.

2. Run scripts under xgboost/demo/kaggle-higgs/: higgs-train.R and higgs-pred.R. The
computation will take less than a minute on Intel i7.

3. Go to the submission page and submit your result.

We provide a script to compare the time cost on the higgs dataset with gbm and xgboost.
The training set contains 350000 records and 30 features.

xgboost can automatically do parallel computation. On a machine with Intel i7-4700MQ
and 24GB memories, we found that xgboost costs about 35 seconds, which is about 20 times
faster than gbm. When we limited xgboost to use only one thread, it was still about two times
faster than gbm.

Meanwhile, the result from xgboost reaches 3.60@AMS with a single model. This results
stands in the top 30% of the competition.

References

Bache K, Lichman M (2013). “UCI Machine Learning Repository.” URL http://archive.ics.

uci.edu/ml/.

Friedman J, Hastie T, Tibshirani R, et al. (2000). “Additive logistic regression: a statistical
view of boosting (with discussion and a rejoinder by the authors).” The annals of statistics,
28(2), 337–407.

Friedman JH (2001). “Greedy function approximation: a gradient boosting machine.” Annals
of Statistics, pp. 1189–1232.

3

https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson/data
https://github.com/tqchen/xgboost/blob/master/demo/kaggle-higgs/higgs-train.R
https://github.com/tqchen/xgboost/blob/master/demo/kaggle-higgs/higgs-pred.R
https://www.kaggle.com/c/higgs-boson/submissions/attach
https://github.com/tqchen/xgboost/blob/master/demo/kaggle-higgs/speedtest.R
https://www.kaggle.com/c/higgs-boson/details/evaluation
https://www.kaggle.com/c/higgs-boson/leaderboard
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

	Introduction
	Example with Mushroom data
	Advanced Examples
	The Higgs Boson competition

